Call us toll-free

KW - 3',5'-Cyclic-AMP Phosphodiesterases

T1 - Intracellular compartmentalization of PDE4 cyclic AMP-specific phosphodiesterases

Approximate price

Pages:

275 Words

$19,50

VA. Total biosynthesis of the cyclic AMP booster …

In the ovary, lutropin (LH) stimulates the selective uptake and transport of cholesterol for steroid biosynthesis from HDL particles via the scavenger receptor class B type I (SR-BI). Furthermore the expression of SR-BI mRNA in the ovary is stimulated by LH and cyclic AMP (cAMP). Since the promoter of the rat SR-BI gene is devoid of consensus cyclic AMP response element (CRE) sequences, this study examined if cAMP response element binding protein (CREB) plays a role in the transactivation of SR-BI promoter (SR-BIpr). The transactivation of SR-BIpr was examined in transfected 293T cells and human granulosa SVOG-4o cells, and in primary cultures of rat theca-interstitial cells infected with adenoviral constructs containing the SR-BIpr and a luciferase reporter gene. Dose-related increases in SR-BRpr activity ranging from 2- to 4-fold was induces by 293T cells co-transfected with the catalytic subunit of protein kinase A (cPKA). Co-transfections with CREB and cPKA produced a concentration-dependent increase ranging from 6- to 32-fold. The cAMP-mediated transactivation was significantly attenuated by co-transfection with CREB M1, a non- phosphorylatable, dominant-negative form of CREB. An increase in transactivation of SR-BIpr activity was also seen in SVOG-4o cells co-transfected with CREB. In primary cultures of rat theca-interstitial (T-I) cells infected with an adenoviral construct of SR-BIpr, forskolin produced a marked increase in promoter activity. These data indicate that stimulation of the cAMP-PKA-CREB pathway enhances rat SR-BIpr activity and substantiate the role of CREB as an intermediary in this process. The absence of canonical CRE sequences in the rat SR-BIpr suggests that the activation of SR-BI by CREB may occur either through non-canonical CRE sequences or through additional transcription factors that cooperate with CREB in the activation of SR-BI promoter activity.

LabBench Activity Plant Pigments and Photosynthesis

N2 - In the ovary, lutropin (LH) stimulates the selective uptake and transport of cholesterol for steroid biosynthesis from HDL particles via the scavenger receptor class B type I (SR-BI). Furthermore the expression of SR-BI mRNA in the ovary is stimulated by LH and cyclic AMP (cAMP). Since the promoter of the rat SR-BI gene is devoid of consensus cyclic AMP response element (CRE) sequences, this study examined if cAMP response element binding protein (CREB) plays a role in the transactivation of SR-BI promoter (SR-BIpr). The transactivation of SR-BIpr was examined in transfected 293T cells and human granulosa SVOG-4o cells, and in primary cultures of rat theca-interstitial cells infected with adenoviral constructs containing the SR-BIpr and a luciferase reporter gene. Dose-related increases in SR-BRpr activity ranging from 2- to 4-fold was induces by 293T cells co-transfected with the catalytic subunit of protein kinase A (cPKA). Co-transfections with CREB and cPKA produced a concentration-dependent increase ranging from 6- to 32-fold. The cAMP-mediated transactivation was significantly attenuated by co-transfection with CREB M1, a non- phosphorylatable, dominant-negative form of CREB. An increase in transactivation of SR-BIpr activity was also seen in SVOG-4o cells co-transfected with CREB. In primary cultures of rat theca-interstitial (T-I) cells infected with an adenoviral construct of SR-BIpr, forskolin produced a marked increase in promoter activity. These data indicate that stimulation of the cAMP-PKA-CREB pathway enhances rat SR-BIpr activity and substantiate the role of CREB as an intermediary in this process. The absence of canonical CRE sequences in the rat SR-BIpr suggests that the activation of SR-BI by CREB may occur either through non-canonical CRE sequences or through additional transcription factors that cooperate with CREB in the activation of SR-BI promoter activity.

Tuscany Diet - Biochemistry and Nutrition

CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: Involvement of cyclic AMP dependent protein kinase type II

AB - Incubation of primary cultures of chromaffin cells from bovine adrenal medulla with 8-bromo-adenosine 3',5'-monophosphate (8-Br-cyclic AMP) resulted in an increase in proenkephalin mRNA content. The mRNA that increased was detected by hybridization analysis using a cDNA probe and migrated with an apparent size of approximately 1400 bases. The increase in proenkephalin mRNA following 8-Br-cyclic AMP treatment was apparent in 12 hr and continued over 2 days. Corresponding changes were detected in enkephalin-like immunoreactivity but with a 24-hr lag: the cellular content increased significantly after 2 days of treatment and continued to rise over the next 2 days, whereas changes in the amount released to the medium followed the same time course. Dose-response curves for the increase in the content of proenkephalin mRNA and of enkephalin-containing peptides were essentially identical. Chromatographic characterization of the enkephalin-like peptides demonstrated that 8-Br-cyclic AMP increased both the high molecular weight fraction and the low molecular weight fraction, which was shown by high-pressure liquid chromatography to contain Met5-enkephalin, Leu5-enkephalin, and Met5-enkephalin-Arg6-Phe7. Previous results in chromaffin cells have demonstrated that the synthesis of tyrosine hydroxylase is also regulated by cyclic AMP, with a similar time course. These results therefore suggest the possibility of coordinate regulation by cyclic AMP of the expression of the cotransmitters, catecholamines and enkephalin peptides, in the adrenal medulla.

N2 - The PDE4 cyclic AMP-specific phosphodiesterase family comprises a large number of different isoforms encoded by four distinct genes, with additional complexity arising through alternate mRNA splicing. This generates a number of distinct PDE4 isoforms with unique N-terminal regions. The range of such splice variants emanating from the four PDE4 genes appears to be highly conserved across species. One key role for such regions appears to be their potential to target isoforms to specific intracellular sites. Evidence for such a targeting role for these N-terminal regions can be gleaned by a variety of techniques. These include subcellular fractionation, confocal microscopy, binding assays to show association with proteins having src homology 3 (SH3) domains, and generation of chimeric constructs of these N-terminal regions with proteins that are normally expressed in the cytosol.

⇑ Back to the top ⇑ Regulation of gluconeogenesis

Thromboxane A 2 Promotes Interleukin-6 Biosynthesis Mediated by an Activation of Cyclic AMP-Response Element-Binding Protein in 1321N1 Human Astrocytoma Cells

AB - In the ovary, lutropin (LH) stimulates the selective uptake and transport of cholesterol for steroid biosynthesis from HDL particles via the scavenger receptor class B type I (SR-BI). Furthermore the expression of SR-BI mRNA in the ovary is stimulated by LH and cyclic AMP (cAMP). Since the promoter of the rat SR-BI gene is devoid of consensus cyclic AMP response element (CRE) sequences, this study examined if cAMP response element binding protein (CREB) plays a role in the transactivation of SR-BI promoter (SR-BIpr). The transactivation of SR-BIpr was examined in transfected 293T cells and human granulosa SVOG-4o cells, and in primary cultures of rat theca-interstitial cells infected with adenoviral constructs containing the SR-BIpr and a luciferase reporter gene. Dose-related increases in SR-BRpr activity ranging from 2- to 4-fold was induces by 293T cells co-transfected with the catalytic subunit of protein kinase A (cPKA). Co-transfections with CREB and cPKA produced a concentration-dependent increase ranging from 6- to 32-fold. The cAMP-mediated transactivation was significantly attenuated by co-transfection with CREB M1, a non- phosphorylatable, dominant-negative form of CREB. An increase in transactivation of SR-BIpr activity was also seen in SVOG-4o cells co-transfected with CREB. In primary cultures of rat theca-interstitial (T-I) cells infected with an adenoviral construct of SR-BIpr, forskolin produced a marked increase in promoter activity. These data indicate that stimulation of the cAMP-PKA-CREB pathway enhances rat SR-BIpr activity and substantiate the role of CREB as an intermediary in this process. The absence of canonical CRE sequences in the rat SR-BIpr suggests that the activation of SR-BI by CREB may occur either through non-canonical CRE sequences or through additional transcription factors that cooperate with CREB in the activation of SR-BI promoter activity.

AB - Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. Microbiol. 50:391-409, 2003; and Y. S. Bahn and P. Sundstrom, J. Bacteriol. 183:3211-3223, 2001). However, little is known about the downstream targets of the cAMP signaling pathway that are responsible for morphological transitions and the expression of virulence factors. Here, microarrays were probed with RNA from strains with hypoactive (cap1/cap1 null mutant), hyperactive (pde2/pde2 null mutant), and wild-type cAMP signaling pathways to provide insight into the molecular mechanisms of virulence that are regulated by cAMP and that are related to the morphogenesis of C. albicans. Genes controlling metabolic specialization, cell wall structure, ergosterol/lipid biosynthesis, and stress responses were modulated by cAMP during hypha formation. Phenotypic traits predicted to be regulated by cAMP from the profiling results correlated with the relative strengths of the mutants when tested for resistance to azoles and subjected to heat shock stress and oxidative/nitrosative stress. The results from this study provide important insights into the role of the cAMP signaling pathway not only in morphogenic transitions of C. albicans but also for adaptation to stress and for survival during host infections.

Abstract. 3′,5′-Cyclic AMP has been found to inhibit the transformation of pregnenolone to progesterone in rat adrenal homogenates. The inhibition of this tran
Order now
  • Signal Transduction Processes - The Medical …

    Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii – University of Copenhagen

  • Quick revisions | Biochemistry for Medics – Lecture Notes

    Forskolin - Wikipedia

  • Proinsulin biosynthesis showed a much ..

    Forskolin (coleonol) is a labdane diterpene that is produced by the Indian Coleus plant (Plectranthus barbatus)

Order now

Glucose-induced Proinsulin Biosynthesis Role of ..

The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has been identified in several species of Gram positive bacteria and Chlamydia trachomatis. This molecule has been associated with bacterial cell division, cell wall biosynthesis and phosphate metabolism, and with induction of type I interferon responses by host cells. We demonstrate that B. burgdorferi produces a c-di-AMP synthase, which we designated CdaA. Both CdaA and c-di-AMP levels are very low in cultured B. burgdorferi, and no conditions were identified under which cdaA mRNA was differentially expressed. A mutant B. burgdorferi was produced that expresses high levels of CdaA, yet steady state borrelial cdi-AMP levels did not change, apparently due to degradation by the native DhhP phosphodiesterase. The function(s) of c-di-AMP in the Lyme disease spirochete remains enigmatic.

Regulation of estrogen biosynthesis in human adipose stromal cells

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. Microbiol. 50:391-409, 2003; and Y. S. Bahn and P. Sundstrom, J. Bacteriol. 183:3211-3223, 2001). However, little is known about the downstream targets of the cAMP signaling pathway that are responsible for morphological transitions and the expression of virulence factors. Here, microarrays were probed with RNA from strains with hypoactive (cap1/cap1 null mutant), hyperactive (pde2/pde2 null mutant), and wild-type cAMP signaling pathways to provide insight into the molecular mechanisms of virulence that are regulated by cAMP and that are related to the morphogenesis of C. albicans. Genes controlling metabolic specialization, cell wall structure, ergosterol/lipid biosynthesis, and stress responses were modulated by cAMP during hypha formation. Phenotypic traits predicted to be regulated by cAMP from the profiling results correlated with the relative strengths of the mutants when tested for resistance to azoles and subjected to heat shock stress and oxidative/nitrosative stress. The results from this study provide important insights into the role of the cAMP signaling pathway not only in morphogenic transitions of C. albicans but also for adaptation to stress and for survival during host infections.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order